API Method: Append ?raw
for raw content.
Example: GET https://music-archive.sparkslab.art/0501/code?raw
API Method: Obtain raw json from raw
subpage.
Example: GET https://music-archive.sparkslab.art/0501/raw
1| | [ti:trigonometric functions] |
2| | [ar:天儿] |
3| | [al:科学狂想曲] |
4| | [by:Music Archive] |
5| | [offset:0] |
6| | [00:00.000]trigonometric functions - 天儿 |
7| | [00:10.400]when you first study math about 1234 |
8| | [00:13.000]当你初学数学中的1234 |
9| | [00:13.001]first study equation about xyzt |
10| | [00:15.100]初学方程中的XYZT |
11| | [00:15.101]It will help you to think in a logical way |
12| | [00:16.900]它将帮助你进行逻辑思考 |
13| | [00:16.901]When you sing sine,cosine,cosine,tangent |
14| | [00:19.200]当你唱起正弦,余弦,余弦,正切 |
15| | [00:19.201]Sine,cosine,tangent,cotangent |
16| | [00:21.300]正弦,余弦,正切,余切 |
17| | [00:21.301]Sine,cosine,..,secant,cosecant |
18| | [00:23.500]正弦,余弦,正割,余割 |
19| | [00:23.501][03:42.501]Let's sing a song about trig-functions |
20| | [00:26.000]让我们唱起三角函数的歌谣吧 |
21| | [00:26.001][00:49.301][01:08.401][01:46.701][02:04.201][02:46.700][03:29.601][03:53.501] |
22| | [00:26.002][00:27.800]sin(2π+α) = sinα |
23| | [00:27.801][00:29.900]cos(2π+α) = cosα |
24| | [00:29.901][00:32.000]tan(2π+α) = tanα |
25| | [00:32.001]which is induction formula1,and induction formula 2 |
26| | [00:34.200]这是诱导公式归类1,下面是诱导公式归类2 |
27| | [00:34.201][00:36.600]sin(π+α) = -sinα |
28| | [00:36.601][00:38.700]cos(π+α) = -cosα |
29| | [00:38.701][00:40.600]tan(π+α) = tanα |
30| | [00:40.601][00:42.700]sin(π-α) = sinα |
31| | [00:42.701][00:45.000]cos(π-α) = -cosα |
32| | [00:45.001][00:47.000]tan(π-α) = -tanα |
33| | [00:47.001]These are all those "name donot -change" |
34| | [00:49.300]这些均为“函数名不变” |
35| | [00:49.302]As pi goes to half pi the difference shall be huge |
36| | [00:51.500]当π成为π/2是变化会很大 |
37| | [00:51.501][00:53.400]sin(π/2+α) = cosα |
38| | [00:53.401][00:55.500]cos(π/2-α) = sinα |
39| | [00:55.501][00:57.700]sin(π/2-α) = cosα |
40| | [00:57.701][00:59.900]cos(π/2+α) = -sinα |
41| | [00:59.901][01:02.100]tan(π/2+α) = -cotα |
42| | [01:02.101][01:08.400]tan(π/2-α) = cotα |
43| | [01:08.402]That is to say the odds will change, evens are conserved |
44| | [01:12.700]这就是说 :奇变偶不变 |
45| | [01:12.701]The notations that they get depend on where they are |
46| | [01:16.700]符号看象限 |
47| | [01:16.701]But no matter where you are, I've gotta say that |
48| | [01:21.300]但不论你在哪,我将会说 |
49| | [01:21.301]If you were my sine curve,I'd be your cosine curve |
50| | [01:25.800]你若为正弦曲线,我愿做余弦曲线 |
51| | [01:25.801]I'll be your derivative,you'll be my negtive one |
52| | [01:29.800]我将为你的导数,你将为我负导数 |
53| | [01:29.801]As you change you amplitude,I change my phase |
54| | [01:33.900]当你改变振幅,我改变相位 |
55| | [01:33.901]We can oscillate freely in the external space |
56| | [01:38.400]我们可在外界空间自由震荡 |
57| | [01:38.401]As we change our period and costant at hand |
58| | [01:42.500]当我们改变周期和手边常数 |
59| | [01:42.501]We travel from the origin to infinity |
60| | [01:46.700]我们从原点驶向无尽 |
61| | [01:46.702]It's you sine,and you cosine |
62| | [01:51.100]是你,正弦,余弦 |
63| | [01:51.101]Who make charming music around the world |
64| | [01:55.300]创造了世间动人的音乐 |
65| | [01:55.301]It's you tangent,cotangent |
66| | [01:59.500]是你,正切,余切 |
67| | [01:59.501]Who proclaim the true meaning of centrosymmetry |
68| | [02:04.200]揭示了中心对称的真谛 |
69| | [02:04.202]- Break - |
70| | [02:46.701]You wanna measure width of a river,height of a tower |
71| | [02:49.200]你想测量河宽及塔高 |
72| | [02:49.201]You scratch your head which cost you more than an hour |
73| | [02:51.200]你抓耳挠腮一个多小时也想不出 |
74| | [02:51.201]You don't need to ask any "gods" or "master" for help |
75| | [02:53.500]你无需向dalao们请教 |
76| | [02:53.501]This group of formulas are gonna help you solve |
77| | [02:55.600]这一组公式将帮你解决 |
78| | [02:55.601][02:59.000]sin(α+β) = sinα•cosβ + cosα•sinβ |
79| | [02:59.001][03:02.200]cos(α+β) = cosα•cosβ - sinα•sinβ |
80| | [03:02.201][03:06.000]tan(α+β) = (tanα + tanβ) / (1 - tanα•tanβ) |
81| | [03:06.001][03:09.800]sin(α-β) = sinα•cosβ - cosα•sinβ |
82| | [03:09.801][03:12.900]cos(α-β) = cosα•cosβ + sinα•sinβ |
83| | [03:12.901]tan(α-β) = (tanα - tanβ) / (1 + tanα•tanβ) |
84| | [03:17.800]tan(α-β) = (tanα - tanβ)/(1 + tanα•tanβ) |
85| | [03:17.801]As you come across a right triangle you fell easy to sovle |
86| | [03:20.300]当你遇到直角三角形很容易解 |
87| | [03:20.301]But an obtuse triange's gonna make you feel confused |
88| | [03:22.500]但钝角三角形使你感到困惑 |
89| | [03:22.501]Don't worry about what you do |
90| | [03:23.800]无须担心 |
91| | [03:23.801]There are always means to solve |
92| | [03:24.700]总有解决方法 |
93| | [03:24.701]As long as you master the sine cosine law |
94| | [03:29.600]只要你掌握了正余弦定理 |
95| | [03:29.602]At this momnet I've got nothing to say |
96| | [03:33.900][03:42.500]此刻我无以言表 |
97| | [03:33.901]As trig-functions rain down upon me |
98| | [03:38.400]当时三角函数犹雨点般落向我 |
99| | [03:38.401]At this moment I've got nothing to say |
100| | [03:46.700]让我们唱起三角函数歌谣吧 |
101| | [03:46.701]Long live the trigonometric functions |
102| | [03:53.500]三角函数万岁 |
103| | [03:53.502]- End - |
104| |
Standard contents only, with minified lines.
API Method: Append ?raw&lrc=minified&delta=#&comment=#&precision=#
for raw content.
Example: GET https://music-archive.sparkslab.art/0501/code?raw&lrc=minified&delta=0&comment=0.7&precision=0.1
1| | [ti:trigonometric functions] |
2| | [ar:天儿] |
3| | [txmp_la:天儿] |
4| | [txmp_ma:天儿] |
5| | [al:科学狂想曲] |
6| | [by:Music Archive] |
7| | [offset:0] |
8| | [00:00.000]trigonometric functions - 天儿 |
9| | [txmp_para:N1 段落1] |
10| | [00:10.400]when you first study math about 1234 |
11| | [00:13.000]当你初学数学中的1234 |
12| | [00:13.001]first study equation about xyzt |
13| | [00:15.100]初学方程中的XYZT |
14| | [00:15.101]It will help you to think in a logical way |
15| | [00:16.900]它将帮助你进行逻辑思考 |
16| | [00:16.901]When you sing sine,cosine,cosine,tangent |
17| | [00:19.200]当你唱起正弦,余弦,余弦,正切 |
18| | [00:19.201]Sine,cosine,tangent,cotangent |
19| | [00:21.300]正弦,余弦,正切,余切 |
20| | [00:21.301]Sine,cosine,..,secant,cosecant |
21| | [00:23.500]正弦,余弦,正割,余割 |
22| | [00:23.501]Let's sing a song about trig-functions |
23| | [00:26.000]让我们唱起三角函数的歌谣吧 |
24| | [00:26.001] |
25| | [txmp_para:N2 段落2] |
26| | [00:26.002]sin(2π+α) = sinα |
27| | [00:27.800]sin(2π+α) = sinα |
28| | [00:27.801]cos(2π+α) = cosα |
29| | [00:29.900]cos(2π+α) = cosα |
30| | [00:29.901]tan(2π+α) = tanα |
31| | [00:32.000]tan(2π+α) = tanα |
32| | [00:32.001]which is induction formula1,and induction formula 2 |
33| | [00:34.200]这是诱导公式归类1,下面是诱导公式归类2 |
34| | [00:34.201]sin(π+α) = -sinα |
35| | [00:36.600]sin(π+α) = -sinα |
36| | [00:36.601]cos(π+α) = -cosα |
37| | [00:38.700]cos(π+α) = -cosα |
38| | [00:38.701]tan(π+α) = tanα |
39| | [00:40.600]tan(π+α) = tanα |
40| | [00:40.601]sin(π-α) = sinα |
41| | [00:42.700]sin(π-α) = sinα |
42| | [00:42.701]cos(π-α) = -cosα |
43| | [00:45.000]cos(π-α) = -cosα |
44| | [00:45.001]tan(π-α) = -tanα |
45| | [00:47.000]tan(π-α) = -tanα |
46| | [00:47.001]These are all those "name donot -change" |
47| | [00:49.300]这些均为“函数名不变” |
48| | [00:49.301] |
49| | [txmp_para:N3 段落3] |
50| | [00:49.302]As pi goes to half pi the difference shall be huge |
51| | [00:51.500]当π成为π/2是变化会很大 |
52| | [00:51.501]sin(π/2+α) = cosα |
53| | [00:53.400]sin(π/2+α) = cosα |
54| | [00:53.401]cos(π/2-α) = sinα |
55| | [00:55.500]cos(π/2-α) = sinα |
56| | [00:55.501]sin(π/2-α) = cosα |
57| | [00:57.700]sin(π/2-α) = cosα |
58| | [00:57.701]cos(π/2+α) = -sinα |
59| | [00:59.900]cos(π/2+α) = -sinα |
60| | [00:59.901]tan(π/2+α) = -cotα |
61| | [01:02.100]tan(π/2+α) = -cotα |
62| | [01:02.101]tan(π/2-α) = cotα |
63| | [01:08.400]tan(π/2-α) = cotα |
64| | [01:08.401] |
65| | [txmp_para:N4 段落4] |
66| | [01:08.402]That is to say the odds will change, evens are conserved |
67| | [01:12.700]这就是说 :奇变偶不变 |
68| | [01:12.701]The notations that they get depend on where they are |
69| | [01:16.700]符号看象限 |
70| | [01:16.701]But no matter where you are, I've gotta say that |
71| | [01:21.300]但不论你在哪,我将会说 |
72| | [01:21.301]If you were my sine curve,I'd be your cosine curve |
73| | [01:25.800]你若为正弦曲线,我愿做余弦曲线 |
74| | [01:25.801]I'll be your derivative,you'll be my negtive one |
75| | [01:29.800]我将为你的导数,你将为我负导数 |
76| | [01:29.801]As you change you amplitude,I change my phase |
77| | [01:33.900]当你改变振幅,我改变相位 |
78| | [01:33.901]We can oscillate freely in the external space |
79| | [01:38.400]我们可在外界空间自由震荡 |
80| | [01:38.401]As we change our period and costant at hand |
81| | [01:42.500]当我们改变周期和手边常数 |
82| | [01:42.501]We travel from the origin to infinity |
83| | [01:46.700]我们从原点驶向无尽 |
84| | [01:46.701] |
85| | [txmp_para:N5 段落5] |
86| | [01:46.702]It's you sine,and you cosine |
87| | [01:51.100]是你,正弦,余弦 |
88| | [01:51.101]Who make charming music around the world |
89| | [01:55.300]创造了世间动人的音乐 |
90| | [01:55.301]It's you tangent,cotangent |
91| | [01:59.500]是你,正切,余切 |
92| | [01:59.501]Who proclaim the true meaning of centrosymmetry |
93| | [02:04.200]揭示了中心对称的真谛 |
94| | [02:04.201] |
95| | [txmp_para:-- 间奏] |
96| | [02:04.202]- Break - |
97| | [02:46.700] |
98| | [txmp_para:N6 段落6] |
99| | [02:46.701]You wanna measure width of a river,height of a tower |
100| | [02:49.200]你想测量河宽及塔高 |
101| | [02:49.201]You scratch your head which cost you more than an hour |
102| | [02:51.200]你抓耳挠腮一个多小时也想不出 |
103| | [02:51.201]You don't need to ask any "gods" or "master" for help |
104| | [02:53.500]你无需向dalao们请教 |
105| | [02:53.501]This group of formulas are gonna help you solve |
106| | [02:55.600]这一组公式将帮你解决 |
107| | [02:55.601]sin(α+β) = sinα•cosβ + cosα•sinβ |
108| | [02:59.000]sin(α+β) = sinα•cosβ + cosα•sinβ |
109| | [02:59.001]cos(α+β) = cosα•cosβ - sinα•sinβ |
110| | [03:02.200]cos(α+β) = cosα•cosβ - sinα•sinβ |
111| | [03:02.201]tan(α+β) = (tanα + tanβ) / (1 - tanα•tanβ) |
112| | [03:06.000]tan(α+β) = (tanα + tanβ) / (1 - tanα•tanβ) |
113| | [03:06.001]sin(α-β) = sinα•cosβ - cosα•sinβ |
114| | [03:09.800]sin(α-β) = sinα•cosβ - cosα•sinβ |
115| | [03:09.801]cos(α-β) = cosα•cosβ + sinα•sinβ |
116| | [03:12.900]cos(α-β) = cosα•cosβ + sinα•sinβ |
117| | [03:12.901]tan(α-β) = (tanα - tanβ) / (1 + tanα•tanβ) |
118| | [03:17.800]tan(α-β) = (tanα - tanβ)/(1 + tanα•tanβ) |
119| | [03:17.801]As you come across a right triangle you fell easy to sovle |
120| | [03:20.300]当你遇到直角三角形很容易解 |
121| | [03:20.301]But an obtuse triange's gonna make you feel confused |
122| | [03:22.500]但钝角三角形使你感到困惑 |
123| | [03:22.501]Don't worry about what you do |
124| | [03:23.800]无须担心 |
125| | [03:23.801]There are always means to solve |
126| | [03:24.700]总有解决方法 |
127| | [03:24.701]As long as you master the sine cosine law |
128| | [03:29.600]只要你掌握了正余弦定理 |
129| | [03:29.601] |
130| | [txmp_para:N7 段落7] |
131| | [03:29.602]At this momnet I've got nothing to say |
132| | [03:33.900]此刻我无以言表 |
133| | [03:33.901]As trig-functions rain down upon me |
134| | [03:38.400]当时三角函数犹雨点般落向我 |
135| | [03:38.401]At this moment I've got nothing to say |
136| | [03:42.500]此刻我无以言表 |
137| | [03:42.501]Let's sing a song about trig-functions |
138| | [03:46.700]让我们唱起三角函数歌谣吧 |
139| | [03:46.701]Long live the trigonometric functions |
140| | [03:53.500]三角函数万岁 |
141| | [03:53.501] |
142| | [txmp_final:03:53.500] |
143| | [03:53.502]- End - |
144| |
Express lyrics precisely.
API Method: Append ?raw&lrc=fancy&delta=#&comment=#&precision=#
for raw content.
Example: GET https://music-archive.sparkslab.art/0501/code?raw&lrc=fancy&delta=0&comment=0.7&precision=0.1
1| | !dataver 201804 |
2| | [Info] |
3| | N trigonometric functions |
4| | S 天儿 |
5| | C 科学狂想曲 |
6| | LA 天儿 |
7| | MA 天儿 |
8| | G1 #3949AB |
9| | G2 #1976D2 |
10| | O https://music.163.com/#/song?id=34380194 |
11| | |
12| | [Para N1 段落1] |
13| | L 10.4 when you first study math about 1234 |
14| | L - 当你初学数学中的1234 |
15| | L 13.0 first study equation about xyzt |
16| | L - 初学方程中的XYZT |
17| | L 15.1 It will help you to think in a logical way |
18| | L - 它将帮助你进行逻辑思考 |
19| | L 16.9 When you sing sine,cosine,cosine,tangent |
20| | L - 当你唱起正弦,余弦,余弦,正切 |
21| | L 19.2 Sine,cosine,tangent,cotangent |
22| | L - 正弦,余弦,正切,余切 |
23| | L 21.3 Sine,cosine,..,secant,cosecant |
24| | L - 正弦,余弦,正割,余割 |
25| | L 23.5 Let's sing a song about trig-functions |
26| | L - 让我们唱起三角函数的歌谣吧 |
27| | |
28| | [Para N2 段落2] |
29| | L 26.0 sin(2π+α) = sinα |
30| | L - sin(2π+α) = sinα |
31| | L 27.8 cos(2π+α) = cosα |
32| | L - cos(2π+α) = cosα |
33| | L 29.9 tan(2π+α) = tanα |
34| | L - tan(2π+α) = tanα |
35| | L 32.0 which is induction formula1,and induction formula 2 |
36| | L - 这是诱导公式归类1,下面是诱导公式归类2 |
37| | L 34.2 sin(π+α) = -sinα |
38| | L - sin(π+α) = -sinα |
39| | L 36.6 cos(π+α) = -cosα |
40| | L - cos(π+α) = -cosα |
41| | L 38.7 tan(π+α) = tanα |
42| | L - tan(π+α) = tanα |
43| | L 40.6 sin(π-α) = sinα |
44| | L - sin(π-α) = sinα |
45| | L 42.7 cos(π-α) = -cosα |
46| | L - cos(π-α) = -cosα |
47| | L 45.0 tan(π-α) = -tanα |
48| | L - tan(π-α) = -tanα |
49| | L 47.0 These are all those "name donot -change" |
50| | L - 这些均为“函数名不变” |
51| | |
52| | [Para N3 段落3] |
53| | L 49.3 As pi goes to half pi the difference shall be huge |
54| | L - 当π成为π/2是变化会很大 |
55| | L 51.5 sin(π/2+α) = cosα |
56| | L - sin(π/2+α) = cosα |
57| | L 53.4 cos(π/2-α) = sinα |
58| | L - cos(π/2-α) = sinα |
59| | L 55.5 sin(π/2-α) = cosα |
60| | L - sin(π/2-α) = cosα |
61| | L 57.7 cos(π/2+α) = -sinα |
62| | L - cos(π/2+α) = -sinα |
63| | L 59.9 tan(π/2+α) = -cotα |
64| | L - tan(π/2+α) = -cotα |
65| | L 62.1 tan(π/2-α) = cotα |
66| | L - tan(π/2-α) = cotα |
67| | |
68| | [Para N4 段落4] |
69| | L 68.4 That is to say the odds will change, evens are conserved |
70| | L - 这就是说 :奇变偶不变 |
71| | L 72.7 The notations that they get depend on where they are |
72| | L - 符号看象限 |
73| | L 76.7 But no matter where you are, I've gotta say that |
74| | L - 但不论你在哪,我将会说 |
75| | L 81.3 If you were my sine curve,I'd be your cosine curve |
76| | L - 你若为正弦曲线,我愿做余弦曲线 |
77| | L 85.8 I'll be your derivative,you'll be my negtive one |
78| | L - 我将为你的导数,你将为我负导数 |
79| | L 89.8 As you change you amplitude,I change my phase |
80| | L - 当你改变振幅,我改变相位 |
81| | L 93.9 We can oscillate freely in the external space |
82| | L - 我们可在外界空间自由震荡 |
83| | L 98.4 As we change our period and costant at hand |
84| | L - 当我们改变周期和手边常数 |
85| | L 102.5 We travel from the origin to infinity |
86| | L - 我们从原点驶向无尽 |
87| | |
88| | [Para N5 段落5] |
89| | L 106.7 It's you sine,and you cosine |
90| | L - 是你,正弦,余弦 |
91| | L 111.1 Who make charming music around the world |
92| | L - 创造了世间动人的音乐 |
93| | L 115.3 It's you tangent,cotangent |
94| | L - 是你,正切,余切 |
95| | L 119.5 Who proclaim the true meaning of centrosymmetry |
96| | L - 揭示了中心对称的真谛 |
97| | |
98| | [Para -- 间奏] |
99| | L 124.2 - - - - - - - |
100| | |
101| | [Para N6 段落6] |
102| | L 166.7 You wanna measure width of a river,height of a tower |
103| | L - 你想测量河宽及塔高 |
104| | L 169.2 You scratch your head which cost you more than an hour |
105| | L - 你抓耳挠腮一个多小时也想不出 |
106| | L 171.2 You don't need to ask any "gods" or "master" for help |
107| | L - 你无需向dalao们请教 |
108| | L 173.5 This group of formulas are gonna help you solve |
109| | L - 这一组公式将帮你解决 |
110| | L 175.6 sin(α+β) = sinα•cosβ + cosα•sinβ |
111| | L - sin(α+β) = sinα•cosβ + cosα•sinβ |
112| | L 179.0 cos(α+β) = cosα•cosβ - sinα•sinβ |
113| | L - cos(α+β) = cosα•cosβ - sinα•sinβ |
114| | L 182.2 tan(α+β) = (tanα + tanβ) / (1 - tanα•tanβ) |
115| | L - tan(α+β) = (tanα + tanβ) / (1 - tanα•tanβ) |
116| | L 186.0 sin(α-β) = sinα•cosβ - cosα•sinβ |
117| | L - sin(α-β) = sinα•cosβ - cosα•sinβ |
118| | L 189.8 cos(α-β) = cosα•cosβ + sinα•sinβ |
119| | L - cos(α-β) = cosα•cosβ + sinα•sinβ |
120| | L 192.9 tan(α-β) = (tanα - tanβ) / (1 + tanα•tanβ) |
121| | L - tan(α-β) = (tanα - tanβ)/(1 + tanα•tanβ) |
122| | L 197.8 As you come across a right triangle you fell easy to sovle |
123| | L - 当你遇到直角三角形很容易解 |
124| | L 200.3 But an obtuse triange's gonna make you feel confused |
125| | L - 但钝角三角形使你感到困惑 |
126| | L 202.5 Don't worry about what you do |
127| | L - 无须担心 |
128| | L 203.8 There are always means to solve |
129| | L - 总有解决方法 |
130| | L 204.7 As long as you master the sine cosine law |
131| | L - 只要你掌握了正余弦定理 |
132| | |
133| | [Para N7 段落7] |
134| | L 209.6 At this momnet I've got nothing to say |
135| | L - 此刻我无以言表 |
136| | L 213.9 As trig-functions rain down upon me |
137| | L - 当时三角函数犹雨点般落向我 |
138| | L 218.4 At this moment I've got nothing to say |
139| | L - 此刻我无以言表 |
140| | L 222.5 Let's sing a song about trig-functions |
141| | L - 让我们唱起三角函数歌谣吧 |
142| | L 226.7 Long live the trigonometric functions |
143| | L - 三角函数万岁 |
144| | |
145| | [Final 233.5] |
146| |
1> | !dataver 201804 |
· | Notice: Line 1 - The version of file is 201804, while the latest is 201805. This probably means that the file is outdated. |
2> | [Info] |