Music Archive Loading  

 Login
Page ?/?: Undefined
  • Fast Navigation

Source File

!dataver 201804 [Info] N trigonometric functions S 天儿 C 科学狂想曲 LA 天儿 MA 天儿 G1 #3949AB G2 #1976D2 O https://music.163.com/#/song?id=34380194 [Para N1 段落1] L 10.4 when you first study math about 1234 L - 当你初学数学中的1234 L 13.0 first study equation about xyzt L - 初学方程中的XYZT L 15.1 It will help you to think in a logical way L - 它将帮助你进行逻辑思考 L 16.9 When you sing sine,cosine,cosine,tangent L - 当你唱起正弦,余弦,余弦,正切 L 19.2 Sine,cosine,tangent,cotangent L - 正弦,余弦,正切,余切 L 21.3 Sine,cosine,..,secant,cosecant L - 正弦,余弦,正割,余割 L 23.5 Let's sing a song about trig-functions L - 让我们唱起三角函数的歌谣吧 [Para N2 段落2] L 26.0 sin(2π+α) = sinα L - sin(2π+α) = sinα L 27.8 cos(2π+α) = cosα L - cos(2π+α) = cosα L 29.9 tan(2π+α) = tanα L - tan(2π+α) = tanα L 32.0 which is induction formula1,and induction formula 2 L - 这是诱导公式归类1,下面是诱导公式归类2 L 34.2 sin(π+α) = -sinα L - sin(π+α) = -sinα L 36.6 cos(π+α) = -cosα L - cos(π+α) = -cosα L 38.7 tan(π+α) = tanα L - tan(π+α) = tanα L 40.6 sin(π-α) = sinα L - sin(π-α) = sinα L 42.7 cos(π-α) = -cosα L - cos(π-α) = -cosα L 45.0 tan(π-α) = -tanα L - tan(π-α) = -tanα L 47.0 These are all those "name donot -change" L - 这些均为“函数名不变” [Para N3 段落3] L 49.3 As pi goes to half pi the difference shall be huge L - 当π成为π/2是变化会很大 L 51.5 sin(π/2+α) = cosα L - sin(π/2+α) = cosα L 53.4 cos(π/2-α) = sinα L - cos(π/2-α) = sinα L 55.5 sin(π/2-α) = cosα L - sin(π/2-α) = cosα L 57.7 cos(π/2+α) = -sinα L - cos(π/2+α) = -sinα L 59.9 tan(π/2+α) = -cotα L - tan(π/2+α) = -cotα L 62.1 tan(π/2-α) = cotα L - tan(π/2-α) = cotα [Para N4 段落4] L 68.4 That is to say the odds will change, evens are conserved L - 这就是说 :奇变偶不变 L 72.7 The notations that they get depend on where they are L - 符号看象限 L 76.7 But no matter where you are, I've gotta say that L - 但不论你在哪,我将会说 L 81.3 If you were my sine curve,I'd be your cosine curve L - 你若为正弦曲线,我愿做余弦曲线 L 85.8 I'll be your derivative,you'll be my negtive one L - 我将为你的导数,你将为我负导数 L 89.8 As you change you amplitude,I change my phase L - 当你改变振幅,我改变相位 L 93.9 We can oscillate freely in the external space L - 我们可在外界空间自由震荡 L 98.4 As we change our period and costant at hand L - 当我们改变周期和手边常数 L 102.5 We travel from the origin to infinity L - 我们从原点驶向无尽 [Para N5 段落5] L 106.7 It's you sine,and you cosine L - 是你,正弦,余弦 L 111.1 Who make charming music around the world L - 创造了世间动人的音乐 L 115.3 It's you tangent,cotangent L - 是你,正切,余切 L 119.5 Who proclaim the true meaning of centrosymmetry L - 揭示了中心对称的真谛 [Para -- 间奏] L 124.2 - - - - - - - [Para N6 段落6] L 166.7 You wanna measure width of a river,height of a tower L - 你想测量河宽及塔高 L 169.2 You scratch your head which cost you more than an hour L - 你抓耳挠腮一个多小时也想不出 L 171.2 You don't need to ask any "gods" or "master" for help L - 你无需向dalao们请教 L 173.5 This group of formulas are gonna help you solve L - 这一组公式将帮你解决 L 175.6 sin(α+β) = sinα•cosβ + cosα•sinβ L - sin(α+β) = sinα•cosβ + cosα•sinβ L 179.0 cos(α+β) = cosα•cosβ - sinα•sinβ L - cos(α+β) = cosα•cosβ - sinα•sinβ L 182.2 tan(α+β) = (tanα + tanβ) / (1 - tanα•tanβ) L - tan(α+β) = (tanα + tanβ) / (1 - tanα•tanβ) L 186.0 sin(α-β) = sinα•cosβ - cosα•sinβ L - sin(α-β) = sinα•cosβ - cosα•sinβ L 189.8 cos(α-β) = cosα•cosβ + sinα•sinβ L - cos(α-β) = cosα•cosβ + sinα•sinβ L 192.9 tan(α-β) = (tanα - tanβ) / (1 + tanα•tanβ) L - tan(α-β) = (tanα - tanβ)/(1 + tanα•tanβ) L 197.8 As you come across a right triangle you fell easy to sovle L - 当你遇到直角三角形很容易解 L 200.3 But an obtuse triange's gonna make you feel confused L - 但钝角三角形使你感到困惑 L 202.5 Don't worry about what you do L - 无须担心 L 203.8 There are always means to solve L - 总有解决方法 L 204.7 As long as you master the sine cosine law L - 只要你掌握了正余弦定理 [Para N7 段落7] L 209.6 At this momnet I've got nothing to say L - 此刻我无以言表 L 213.9 As trig-functions rain down upon me L - 当时三角函数犹雨点般落向我 L 218.4 At this moment I've got nothing to say L - 此刻我无以言表 L 222.5 Let's sing a song about trig-functions L - 让我们唱起三角函数歌谣吧 L 226.7 Long live the trigonometric functions L - 三角函数万岁 [Final 233.5]

API Method: Append ?raw for raw content.
Example: GET https://music-archive.sparkslab.art/0501/code?raw

Compilation Results

{"meta":{"N":"trigonometric functions","S":"天儿","LA":"天儿","MA":"天儿","C":"科学狂想曲","A":"3949AB","G1":"3949AB","G2":"1976D2","O":"https://music.163.com/#/song?id=34380194","P":"0501/avatar","X":"2F3FA1"},"lyrics":[{"id":-1,"type":"lyrics","ac":"--","n":"pre","premark":true,"display":true,"title":false,"in":[{"id":-1,"ts":"0","c":"- - - - - - -"}]},{"id":0,"type":"lyrics","ac":"N<sub>1</sub>","n":"段落1","display":true,"title":true,"in":[{"id":0,"ts":104,"c":"when you first study math about 1234"},{"id":1,"ts":1610612736,"c":"当你初学数学中的1234"},{"id":2,"ts":130,"c":"first study equation about xyzt"},{"id":3,"ts":1610612736,"c":"初学方程中的XYZT"},{"id":4,"ts":151,"c":"It will help you to think in a logical way"},{"id":5,"ts":1610612736,"c":"它将帮助你进行逻辑思考"},{"id":6,"ts":169,"c":"When you sing sine,cosine,cosine,tangent"},{"id":7,"ts":1610612736,"c":"当你唱起正弦,余弦,余弦,正切"},{"id":8,"ts":192,"c":"Sine,cosine,tangent,cotangent"},{"id":9,"ts":1610612736,"c":"正弦,余弦,正切,余切"},{"id":10,"ts":213,"c":"Sine,cosine,..,secant,cosecant"},{"id":11,"ts":1610612736,"c":"正弦,余弦,正割,余割"},{"id":12,"ts":235,"c":"Let's sing a song about trig-functions"},{"id":13,"ts":1610612736,"c":"让我们唱起三角函数的歌谣吧"}]},{"id":1,"type":"lyrics","ac":"N<sub>2</sub>","n":"段落2","display":true,"title":true,"in":[{"id":14,"ts":260,"c":"sin(2π+α) = sinα"},{"id":15,"ts":1610612736,"c":"sin(2π+α) = sinα"},{"id":16,"ts":278,"c":"cos(2π+α) = cosα"},{"id":17,"ts":1610612736,"c":"cos(2π+α) = cosα"},{"id":18,"ts":299,"c":"tan(2π+α) = tanα"},{"id":19,"ts":1610612736,"c":"tan(2π+α) = tanα"},{"id":20,"ts":320,"c":"which is induction formula1,and induction formula 2"},{"id":21,"ts":1610612736,"c":"这是诱导公式归类1,下面是诱导公式归类2"},{"id":22,"ts":342,"c":"sin(π+α) = -sinα"},{"id":23,"ts":1610612736,"c":"sin(π+α) = -sinα"},{"id":24,"ts":366,"c":"cos(π+α) = -cosα"},{"id":25,"ts":1610612736,"c":"cos(π+α) = -cosα"},{"id":26,"ts":387,"c":"tan(π+α) = tanα"},{"id":27,"ts":1610612736,"c":"tan(π+α) = tanα"},{"id":28,"ts":406,"c":"sin(π-α) = sinα"},{"id":29,"ts":1610612736,"c":"sin(π-α) = sinα"},{"id":30,"ts":427,"c":"cos(π-α) = -cosα"},{"id":31,"ts":1610612736,"c":"cos(π-α) = -cosα"},{"id":32,"ts":450,"c":"tan(π-α) = -tanα"},{"id":33,"ts":1610612736,"c":"tan(π-α) = -tanα"},{"id":34,"ts":470,"c":"These are all those \"name donot -change\""},{"id":35,"ts":1610612736,"c":"这些均为“函数名不变”"}]},{"id":2,"type":"lyrics","ac":"N<sub>3</sub>","n":"段落3","display":true,"title":true,"in":[{"id":36,"ts":493,"c":"As pi goes to half pi the difference shall be huge"},{"id":37,"ts":1610612736,"c":"当π成为π/2是变化会很大"},{"id":38,"ts":515,"c":"sin(π/2+α) = cosα"},{"id":39,"ts":1610612736,"c":"sin(π/2+α) = cosα"},{"id":40,"ts":534,"c":"cos(π/2-α) = sinα"},{"id":41,"ts":1610612736,"c":"cos(π/2-α) = sinα"},{"id":42,"ts":555,"c":"sin(π/2-α) = cosα"},{"id":43,"ts":1610612736,"c":"sin(π/2-α) = cosα"},{"id":44,"ts":577,"c":"cos(π/2+α) = -sinα"},{"id":45,"ts":1610612736,"c":"cos(π/2+α) = -sinα"},{"id":46,"ts":599,"c":"tan(π/2+α) = -cotα"},{"id":47,"ts":1610612736,"c":"tan(π/2+α) = -cotα"},{"id":48,"ts":621,"c":"tan(π/2-α) = cotα"},{"id":49,"ts":1610612736,"c":"tan(π/2-α) = cotα"}]},{"id":3,"type":"lyrics","ac":"N<sub>4</sub>","n":"段落4","display":true,"title":true,"in":[{"id":50,"ts":684,"c":"That is to say the odds will change, evens are conserved"},{"id":51,"ts":1610612736,"c":"这就是说 :奇变偶不变"},{"id":52,"ts":727,"c":"The notations that they get depend on where they are"},{"id":53,"ts":1610612736,"c":"符号看象限"},{"id":54,"ts":767,"c":"But no matter where you are, I've gotta say that"},{"id":55,"ts":1610612736,"c":"但不论你在哪,我将会说"},{"id":56,"ts":813,"c":"If you were my sine curve,I'd be your cosine curve"},{"id":57,"ts":1610612736,"c":"你若为正弦曲线,我愿做余弦曲线"},{"id":58,"ts":858,"c":"I'll be your derivative,you'll be my negtive one"},{"id":59,"ts":1610612736,"c":"我将为你的导数,你将为我负导数"},{"id":60,"ts":898,"c":"As you change you amplitude,I change my phase"},{"id":61,"ts":1610612736,"c":"当你改变振幅,我改变相位"},{"id":62,"ts":939,"c":"We can oscillate freely in the external space"},{"id":63,"ts":1610612736,"c":"我们可在外界空间自由震荡"},{"id":64,"ts":984,"c":"As we change our period and costant at hand"},{"id":65,"ts":1610612736,"c":"当我们改变周期和手边常数"},{"id":66,"ts":1025,"c":"We travel from the origin to infinity"},{"id":67,"ts":1610612736,"c":"我们从原点驶向无尽"}]},{"id":4,"type":"lyrics","ac":"N<sub>5</sub>","n":"段落5","display":true,"title":true,"in":[{"id":68,"ts":1067,"c":"It's you sine,and you cosine"},{"id":69,"ts":1610612736,"c":"是你,正弦,余弦"},{"id":70,"ts":1111,"c":"Who make charming music around the world"},{"id":71,"ts":1610612736,"c":"创造了世间动人的音乐"},{"id":72,"ts":1153,"c":"It's you tangent,cotangent"},{"id":73,"ts":1610612736,"c":"是你,正切,余切"},{"id":74,"ts":1195,"c":"Who proclaim the true meaning of centrosymmetry"},{"id":75,"ts":1610612736,"c":"揭示了中心对称的真谛"}]},{"id":5,"type":"lyrics","ac":"--","n":"间奏","display":true,"title":true,"in":[{"id":76,"ts":1242,"c":"- - - - - - -"}]},{"id":6,"type":"lyrics","ac":"N<sub>6</sub>","n":"段落6","display":true,"title":true,"in":[{"id":77,"ts":1667,"c":"You wanna measure width of a river,height of a tower"},{"id":78,"ts":1610612736,"c":"你想测量河宽及塔高"},{"id":79,"ts":1692,"c":"You scratch your head which cost you more than an hour"},{"id":80,"ts":1610612736,"c":"你抓耳挠腮一个多小时也想不出"},{"id":81,"ts":1712,"c":"You don't need to ask any \"gods\" or \"master\" for help"},{"id":82,"ts":1610612736,"c":"你无需向dalao们请教"},{"id":83,"ts":1735,"c":"This group of formulas are gonna help you solve"},{"id":84,"ts":1610612736,"c":"这一组公式将帮你解决"},{"id":85,"ts":1756,"c":"sin(α+β) = sinα•cosβ + cosα•sinβ"},{"id":86,"ts":1610612736,"c":"sin(α+β) = sinα•cosβ + cosα•sinβ"},{"id":87,"ts":1790,"c":"cos(α+β) = cosα•cosβ - sinα•sinβ"},{"id":88,"ts":1610612736,"c":"cos(α+β) = cosα•cosβ - sinα•sinβ"},{"id":89,"ts":1822,"c":"tan(α+β) = (tanα + tanβ) / (1 - tanα•tanβ)"},{"id":90,"ts":1610612736,"c":"tan(α+β) = (tanα + tanβ) / (1 - tanα•tanβ)"},{"id":91,"ts":1860,"c":"sin(α-β) = sinα•cosβ - cosα•sinβ"},{"id":92,"ts":1610612736,"c":"sin(α-β) = sinα•cosβ - cosα•sinβ"},{"id":93,"ts":1898,"c":"cos(α-β) = cosα•cosβ + sinα•sinβ"},{"id":94,"ts":1610612736,"c":"cos(α-β) = cosα•cosβ + sinα•sinβ"},{"id":95,"ts":1929,"c":"tan(α-β) = (tanα - tanβ) / (1 + tanα•tanβ)"},{"id":96,"ts":1610612736,"c":"tan(α-β) = (tanα - tanβ)/(1 + tanα•tanβ)"},{"id":97,"ts":1978,"c":"As you come across a right triangle you fell easy to sovle"},{"id":98,"ts":1610612736,"c":"当你遇到直角三角形很容易解"},{"id":99,"ts":2003,"c":"But an obtuse triange's gonna make you feel confused"},{"id":100,"ts":1610612736,"c":"但钝角三角形使你感到困惑"},{"id":101,"ts":2025,"c":"Don't worry about what you do"},{"id":102,"ts":1610612736,"c":"无须担心"},{"id":103,"ts":2038,"c":"There are always means to solve"},{"id":104,"ts":1610612736,"c":"总有解决方法"},{"id":105,"ts":2047,"c":"As long as you master the sine cosine law"},{"id":106,"ts":1610612736,"c":"只要你掌握了正余弦定理"}]},{"id":7,"type":"lyrics","ac":"N<sub>7</sub>","n":"段落7","display":true,"title":true,"in":[{"id":107,"ts":2096,"c":"At this momnet I've got nothing to say"},{"id":108,"ts":1610612736,"c":"此刻我无以言表"},{"id":109,"ts":2139,"c":"As trig-functions rain down upon me"},{"id":110,"ts":1610612736,"c":"当时三角函数犹雨点般落向我"},{"id":111,"ts":2184,"c":"At this moment I've got nothing to say"},{"id":112,"ts":1610612736,"c":"此刻我无以言表"},{"id":113,"ts":2225,"c":"Let's sing a song about trig-functions"},{"id":114,"ts":1610612736,"c":"让我们唱起三角函数歌谣吧"},{"id":115,"ts":2267,"c":"Long live the trigonometric functions"},{"id":116,"ts":1610612736,"c":"三角函数万岁"}]},{"id":8,"type":"final","ts":2335,"display":false}],"timestamps":{"0":[-1,-1],"104":[0,0],"1610612736":[7,116],"130":[0,2],"151":[0,4],"169":[0,6],"192":[0,8],"213":[0,10],"235":[0,12],"260":[1,14],"278":[1,16],"299":[1,18],"320":[1,20],"342":[1,22],"366":[1,24],"387":[1,26],"406":[1,28],"427":[1,30],"450":[1,32],"470":[1,34],"493":[2,36],"515":[2,38],"534":[2,40],"555":[2,42],"577":[2,44],"599":[2,46],"621":[2,48],"684":[3,50],"727":[3,52],"767":[3,54],"813":[3,56],"858":[3,58],"898":[3,60],"939":[3,62],"984":[3,64],"1025":[3,66],"1067":[4,68],"1111":[4,70],"1153":[4,72],"1195":[4,74],"1242":[5,76],"1667":[6,77],"1692":[6,79],"1712":[6,81],"1735":[6,83],"1756":[6,85],"1790":[6,87],"1822":[6,89],"1860":[6,91],"1898":[6,93],"1929":[6,95],"1978":[6,97],"2003":[6,99],"2025":[6,101],"2038":[6,103],"2047":[6,105],"2096":[7,107],"2139":[7,109],"2184":[7,111],"2225":[7,113],"2267":[7,115],"2335":[-2,-2]}}

API Method: Obtain raw json from raw subpage.
Example: GET https://music-archive.sparkslab.art/0501/raw

Minified LRC File

1| [ti:trigonometric functions]
2| [ar:天儿]
3| [al:科学狂想曲]
4| [by:Music Archive]
5| [offset:0]
6| [00:00.000]trigonometric functions - 天儿
7| [00:10.400]when you first study math about 1234
8| [00:13.000]当你初学数学中的1234
9| [00:13.001]first study equation about xyzt
10| [00:15.100]初学方程中的XYZT
11| [00:15.101]It will help you to think in a logical way
12| [00:16.900]它将帮助你进行逻辑思考
13| [00:16.901]When you sing sine,cosine,cosine,tangent
14| [00:19.200]当你唱起正弦,余弦,余弦,正切
15| [00:19.201]Sine,cosine,tangent,cotangent
16| [00:21.300]正弦,余弦,正切,余切
17| [00:21.301]Sine,cosine,..,secant,cosecant
18| [00:23.500]正弦,余弦,正割,余割
19| [00:23.501][03:42.501]Let's sing a song about trig-functions
20| [00:26.000]让我们唱起三角函数的歌谣吧
21| [00:26.001][00:49.301][01:08.401][01:46.701][02:04.201][02:46.700][03:29.601][03:53.501]
22| [00:26.002][00:27.800]sin(2π+α) = sinα
23| [00:27.801][00:29.900]cos(2π+α) = cosα
24| [00:29.901][00:32.000]tan(2π+α) = tanα
25| [00:32.001]which is induction formula1,and induction formula 2
26| [00:34.200]这是诱导公式归类1,下面是诱导公式归类2
27| [00:34.201][00:36.600]sin(π+α) = -sinα
28| [00:36.601][00:38.700]cos(π+α) = -cosα
29| [00:38.701][00:40.600]tan(π+α) = tanα
30| [00:40.601][00:42.700]sin(π-α) = sinα
31| [00:42.701][00:45.000]cos(π-α) = -cosα
32| [00:45.001][00:47.000]tan(π-α) = -tanα
33| [00:47.001]These are all those "name donot -change"
34| [00:49.300]这些均为“函数名不变”
35| [00:49.302]As pi goes to half pi the difference shall be huge
36| [00:51.500]当π成为π/2是变化会很大
37| [00:51.501][00:53.400]sin(π/2+α) = cosα
38| [00:53.401][00:55.500]cos(π/2-α) = sinα
39| [00:55.501][00:57.700]sin(π/2-α) = cosα
40| [00:57.701][00:59.900]cos(π/2+α) = -sinα
41| [00:59.901][01:02.100]tan(π/2+α) = -cotα
42| [01:02.101][01:08.400]tan(π/2-α) = cotα
43| [01:08.402]That is to say the odds will change, evens are conserved
44| [01:12.700]这就是说 :奇变偶不变
45| [01:12.701]The notations that they get depend on where they are
46| [01:16.700]符号看象限
47| [01:16.701]But no matter where you are, I've gotta say that
48| [01:21.300]但不论你在哪,我将会说
49| [01:21.301]If you were my sine curve,I'd be your cosine curve
50| [01:25.800]你若为正弦曲线,我愿做余弦曲线
51| [01:25.801]I'll be your derivative,you'll be my negtive one
52| [01:29.800]我将为你的导数,你将为我负导数
53| [01:29.801]As you change you amplitude,I change my phase
54| [01:33.900]当你改变振幅,我改变相位
55| [01:33.901]We can oscillate freely in the external space
56| [01:38.400]我们可在外界空间自由震荡
57| [01:38.401]As we change our period and costant at hand
58| [01:42.500]当我们改变周期和手边常数
59| [01:42.501]We travel from the origin to infinity
60| [01:46.700]我们从原点驶向无尽
61| [01:46.702]It's you sine,and you cosine
62| [01:51.100]是你,正弦,余弦
63| [01:51.101]Who make charming music around the world
64| [01:55.300]创造了世间动人的音乐
65| [01:55.301]It's you tangent,cotangent
66| [01:59.500]是你,正切,余切
67| [01:59.501]Who proclaim the true meaning of centrosymmetry
68| [02:04.200]揭示了中心对称的真谛
69| [02:04.202]- Break -
70| [02:46.701]You wanna measure width of a river,height of a tower
71| [02:49.200]你想测量河宽及塔高
72| [02:49.201]You scratch your head which cost you more than an hour
73| [02:51.200]你抓耳挠腮一个多小时也想不出
74| [02:51.201]You don't need to ask any "gods" or "master" for help
75| [02:53.500]你无需向dalao们请教
76| [02:53.501]This group of formulas are gonna help you solve
77| [02:55.600]这一组公式将帮你解决
78| [02:55.601][02:59.000]sin(α+β) = sinα•cosβ + cosα•sinβ
79| [02:59.001][03:02.200]cos(α+β) = cosα•cosβ - sinα•sinβ
80| [03:02.201][03:06.000]tan(α+β) = (tanα + tanβ) / (1 - tanα•tanβ)
81| [03:06.001][03:09.800]sin(α-β) = sinα•cosβ - cosα•sinβ
82| [03:09.801][03:12.900]cos(α-β) = cosα•cosβ + sinα•sinβ
83| [03:12.901]tan(α-β) = (tanα - tanβ) / (1 + tanα•tanβ)
84| [03:17.800]tan(α-β) = (tanα - tanβ)/(1 + tanα•tanβ)
85| [03:17.801]As you come across a right triangle you fell easy to sovle
86| [03:20.300]当你遇到直角三角形很容易解
87| [03:20.301]But an obtuse triange's gonna make you feel confused
88| [03:22.500]但钝角三角形使你感到困惑
89| [03:22.501]Don't worry about what you do
90| [03:23.800]无须担心
91| [03:23.801]There are always means to solve
92| [03:24.700]总有解决方法
93| [03:24.701]As long as you master the sine cosine law
94| [03:29.600]只要你掌握了正余弦定理
95| [03:29.602]At this momnet I've got nothing to say
96| [03:33.900][03:42.500]此刻我无以言表
97| [03:33.901]As trig-functions rain down upon me
98| [03:38.400]当时三角函数犹雨点般落向我
99| [03:38.401]At this moment I've got nothing to say
100| [03:46.700]让我们唱起三角函数歌谣吧
101| [03:46.701]Long live the trigonometric functions
102| [03:53.500]三角函数万岁
103| [03:53.502]- End -
104|  

Standard contents only, with minified lines.
API Method: Append ?raw&lrc=minified&delta=#&comment=#&precision=# for raw content.
Example: GET https://music-archive.sparkslab.art/0501/code?raw&lrc=minified&delta=0&comment=0.7&precision=0.1

Extended LRC File

1| [ti:trigonometric functions]
2| [ar:天儿]
3| [txmp_la:天儿]
4| [txmp_ma:天儿]
5| [al:科学狂想曲]
6| [by:Music Archive]
7| [offset:0]
8| [00:00.000]trigonometric functions - 天儿
9| [txmp_para:N1 段落1]
10| [00:10.400]when you first study math about 1234
11| [00:13.000]当你初学数学中的1234
12| [00:13.001]first study equation about xyzt
13| [00:15.100]初学方程中的XYZT
14| [00:15.101]It will help you to think in a logical way
15| [00:16.900]它将帮助你进行逻辑思考
16| [00:16.901]When you sing sine,cosine,cosine,tangent
17| [00:19.200]当你唱起正弦,余弦,余弦,正切
18| [00:19.201]Sine,cosine,tangent,cotangent
19| [00:21.300]正弦,余弦,正切,余切
20| [00:21.301]Sine,cosine,..,secant,cosecant
21| [00:23.500]正弦,余弦,正割,余割
22| [00:23.501]Let's sing a song about trig-functions
23| [00:26.000]让我们唱起三角函数的歌谣吧
24| [00:26.001]
25| [txmp_para:N2 段落2]
26| [00:26.002]sin(2π+α) = sinα
27| [00:27.800]sin(2π+α) = sinα
28| [00:27.801]cos(2π+α) = cosα
29| [00:29.900]cos(2π+α) = cosα
30| [00:29.901]tan(2π+α) = tanα
31| [00:32.000]tan(2π+α) = tanα
32| [00:32.001]which is induction formula1,and induction formula 2
33| [00:34.200]这是诱导公式归类1,下面是诱导公式归类2
34| [00:34.201]sin(π+α) = -sinα
35| [00:36.600]sin(π+α) = -sinα
36| [00:36.601]cos(π+α) = -cosα
37| [00:38.700]cos(π+α) = -cosα
38| [00:38.701]tan(π+α) = tanα
39| [00:40.600]tan(π+α) = tanα
40| [00:40.601]sin(π-α) = sinα
41| [00:42.700]sin(π-α) = sinα
42| [00:42.701]cos(π-α) = -cosα
43| [00:45.000]cos(π-α) = -cosα
44| [00:45.001]tan(π-α) = -tanα
45| [00:47.000]tan(π-α) = -tanα
46| [00:47.001]These are all those "name donot -change"
47| [00:49.300]这些均为“函数名不变”
48| [00:49.301]
49| [txmp_para:N3 段落3]
50| [00:49.302]As pi goes to half pi the difference shall be huge
51| [00:51.500]当π成为π/2是变化会很大
52| [00:51.501]sin(π/2+α) = cosα
53| [00:53.400]sin(π/2+α) = cosα
54| [00:53.401]cos(π/2-α) = sinα
55| [00:55.500]cos(π/2-α) = sinα
56| [00:55.501]sin(π/2-α) = cosα
57| [00:57.700]sin(π/2-α) = cosα
58| [00:57.701]cos(π/2+α) = -sinα
59| [00:59.900]cos(π/2+α) = -sinα
60| [00:59.901]tan(π/2+α) = -cotα
61| [01:02.100]tan(π/2+α) = -cotα
62| [01:02.101]tan(π/2-α) = cotα
63| [01:08.400]tan(π/2-α) = cotα
64| [01:08.401]
65| [txmp_para:N4 段落4]
66| [01:08.402]That is to say the odds will change, evens are conserved
67| [01:12.700]这就是说 :奇变偶不变
68| [01:12.701]The notations that they get depend on where they are
69| [01:16.700]符号看象限
70| [01:16.701]But no matter where you are, I've gotta say that
71| [01:21.300]但不论你在哪,我将会说
72| [01:21.301]If you were my sine curve,I'd be your cosine curve
73| [01:25.800]你若为正弦曲线,我愿做余弦曲线
74| [01:25.801]I'll be your derivative,you'll be my negtive one
75| [01:29.800]我将为你的导数,你将为我负导数
76| [01:29.801]As you change you amplitude,I change my phase
77| [01:33.900]当你改变振幅,我改变相位
78| [01:33.901]We can oscillate freely in the external space
79| [01:38.400]我们可在外界空间自由震荡
80| [01:38.401]As we change our period and costant at hand
81| [01:42.500]当我们改变周期和手边常数
82| [01:42.501]We travel from the origin to infinity
83| [01:46.700]我们从原点驶向无尽
84| [01:46.701]
85| [txmp_para:N5 段落5]
86| [01:46.702]It's you sine,and you cosine
87| [01:51.100]是你,正弦,余弦
88| [01:51.101]Who make charming music around the world
89| [01:55.300]创造了世间动人的音乐
90| [01:55.301]It's you tangent,cotangent
91| [01:59.500]是你,正切,余切
92| [01:59.501]Who proclaim the true meaning of centrosymmetry
93| [02:04.200]揭示了中心对称的真谛
94| [02:04.201]
95| [txmp_para:-- 间奏]
96| [02:04.202]- Break -
97| [02:46.700]
98| [txmp_para:N6 段落6]
99| [02:46.701]You wanna measure width of a river,height of a tower
100| [02:49.200]你想测量河宽及塔高
101| [02:49.201]You scratch your head which cost you more than an hour
102| [02:51.200]你抓耳挠腮一个多小时也想不出
103| [02:51.201]You don't need to ask any "gods" or "master" for help
104| [02:53.500]你无需向dalao们请教
105| [02:53.501]This group of formulas are gonna help you solve
106| [02:55.600]这一组公式将帮你解决
107| [02:55.601]sin(α+β) = sinα•cosβ + cosα•sinβ
108| [02:59.000]sin(α+β) = sinα•cosβ + cosα•sinβ
109| [02:59.001]cos(α+β) = cosα•cosβ - sinα•sinβ
110| [03:02.200]cos(α+β) = cosα•cosβ - sinα•sinβ
111| [03:02.201]tan(α+β) = (tanα + tanβ) / (1 - tanα•tanβ)
112| [03:06.000]tan(α+β) = (tanα + tanβ) / (1 - tanα•tanβ)
113| [03:06.001]sin(α-β) = sinα•cosβ - cosα•sinβ
114| [03:09.800]sin(α-β) = sinα•cosβ - cosα•sinβ
115| [03:09.801]cos(α-β) = cosα•cosβ + sinα•sinβ
116| [03:12.900]cos(α-β) = cosα•cosβ + sinα•sinβ
117| [03:12.901]tan(α-β) = (tanα - tanβ) / (1 + tanα•tanβ)
118| [03:17.800]tan(α-β) = (tanα - tanβ)/(1 + tanα•tanβ)
119| [03:17.801]As you come across a right triangle you fell easy to sovle
120| [03:20.300]当你遇到直角三角形很容易解
121| [03:20.301]But an obtuse triange's gonna make you feel confused
122| [03:22.500]但钝角三角形使你感到困惑
123| [03:22.501]Don't worry about what you do
124| [03:23.800]无须担心
125| [03:23.801]There are always means to solve
126| [03:24.700]总有解决方法
127| [03:24.701]As long as you master the sine cosine law
128| [03:29.600]只要你掌握了正余弦定理
129| [03:29.601]
130| [txmp_para:N7 段落7]
131| [03:29.602]At this momnet I've got nothing to say
132| [03:33.900]此刻我无以言表
133| [03:33.901]As trig-functions rain down upon me
134| [03:38.400]当时三角函数犹雨点般落向我
135| [03:38.401]At this moment I've got nothing to say
136| [03:42.500]此刻我无以言表
137| [03:42.501]Let's sing a song about trig-functions
138| [03:46.700]让我们唱起三角函数歌谣吧
139| [03:46.701]Long live the trigonometric functions
140| [03:53.500]三角函数万岁
141| [03:53.501]
142| [txmp_final:03:53.500]
143| [03:53.502]- End -
144|  

Express lyrics precisely.
API Method: Append ?raw&lrc=fancy&delta=#&comment=#&precision=# for raw content.
Example: GET https://music-archive.sparkslab.art/0501/code?raw&lrc=fancy&delta=0&comment=0.7&precision=0.1

Source File

1| !dataver 201804
2| [Info]
3| N trigonometric functions
4| S 天儿
5| C 科学狂想曲
6| LA 天儿
7| MA 天儿
8| G1 #3949AB
9| G2 #1976D2
10| O https://music.163.com/#/song?id=34380194
11|  
12| [Para N1 段落1]
13| L 10.4 when you first study math about 1234
14| L - 当你初学数学中的1234
15| L 13.0 first study equation about xyzt
16| L - 初学方程中的XYZT
17| L 15.1 It will help you to think in a logical way
18| L - 它将帮助你进行逻辑思考
19| L 16.9 When you sing sine,cosine,cosine,tangent
20| L - 当你唱起正弦,余弦,余弦,正切
21| L 19.2 Sine,cosine,tangent,cotangent
22| L - 正弦,余弦,正切,余切
23| L 21.3 Sine,cosine,..,secant,cosecant
24| L - 正弦,余弦,正割,余割
25| L 23.5 Let's sing a song about trig-functions
26| L - 让我们唱起三角函数的歌谣吧
27|  
28| [Para N2 段落2]
29| L 26.0 sin(2π+α) = sinα
30| L - sin(2π+α) = sinα
31| L 27.8 cos(2π+α) = cosα
32| L - cos(2π+α) = cosα
33| L 29.9 tan(2π+α) = tanα
34| L - tan(2π+α) = tanα
35| L 32.0 which is induction formula1,and induction formula 2
36| L - 这是诱导公式归类1,下面是诱导公式归类2
37| L 34.2 sin(π+α) = -sinα
38| L - sin(π+α) = -sinα
39| L 36.6 cos(π+α) = -cosα
40| L - cos(π+α) = -cosα
41| L 38.7 tan(π+α) = tanα
42| L - tan(π+α) = tanα
43| L 40.6 sin(π-α) = sinα
44| L - sin(π-α) = sinα
45| L 42.7 cos(π-α) = -cosα
46| L - cos(π-α) = -cosα
47| L 45.0 tan(π-α) = -tanα
48| L - tan(π-α) = -tanα
49| L 47.0 These are all those "name donot -change"
50| L - 这些均为“函数名不变”
51|  
52| [Para N3 段落3]
53| L 49.3 As pi goes to half pi the difference shall be huge
54| L - 当π成为π/2是变化会很大
55| L 51.5 sin(π/2+α) = cosα
56| L - sin(π/2+α) = cosα
57| L 53.4 cos(π/2-α) = sinα
58| L - cos(π/2-α) = sinα
59| L 55.5 sin(π/2-α) = cosα
60| L - sin(π/2-α) = cosα
61| L 57.7 cos(π/2+α) = -sinα
62| L - cos(π/2+α) = -sinα
63| L 59.9 tan(π/2+α) = -cotα
64| L - tan(π/2+α) = -cotα
65| L 62.1 tan(π/2-α) = cotα
66| L - tan(π/2-α) = cotα
67|  
68| [Para N4 段落4]
69| L 68.4 That is to say the odds will change, evens are conserved
70| L - 这就是说 :奇变偶不变
71| L 72.7 The notations that they get depend on where they are
72| L - 符号看象限
73| L 76.7 But no matter where you are, I've gotta say that
74| L - 但不论你在哪,我将会说
75| L 81.3 If you were my sine curve,I'd be your cosine curve
76| L - 你若为正弦曲线,我愿做余弦曲线
77| L 85.8 I'll be your derivative,you'll be my negtive one
78| L - 我将为你的导数,你将为我负导数
79| L 89.8 As you change you amplitude,I change my phase
80| L - 当你改变振幅,我改变相位
81| L 93.9 We can oscillate freely in the external space
82| L - 我们可在外界空间自由震荡
83| L 98.4 As we change our period and costant at hand
84| L - 当我们改变周期和手边常数
85| L 102.5 We travel from the origin to infinity
86| L - 我们从原点驶向无尽
87|  
88| [Para N5 段落5]
89| L 106.7 It's you sine,and you cosine
90| L - 是你,正弦,余弦
91| L 111.1 Who make charming music around the world
92| L - 创造了世间动人的音乐
93| L 115.3 It's you tangent,cotangent
94| L - 是你,正切,余切
95| L 119.5 Who proclaim the true meaning of centrosymmetry
96| L - 揭示了中心对称的真谛
97|  
98| [Para -- 间奏]
99| L 124.2 - - - - - - -
100|  
101| [Para N6 段落6]
102| L 166.7 You wanna measure width of a river,height of a tower
103| L - 你想测量河宽及塔高
104| L 169.2 You scratch your head which cost you more than an hour
105| L - 你抓耳挠腮一个多小时也想不出
106| L 171.2 You don't need to ask any "gods" or "master" for help
107| L - 你无需向dalao们请教
108| L 173.5 This group of formulas are gonna help you solve
109| L - 这一组公式将帮你解决
110| L 175.6 sin(α+β) = sinα•cosβ + cosα•sinβ
111| L - sin(α+β) = sinα•cosβ + cosα•sinβ
112| L 179.0 cos(α+β) = cosα•cosβ - sinα•sinβ
113| L - cos(α+β) = cosα•cosβ - sinα•sinβ
114| L 182.2 tan(α+β) = (tanα + tanβ) / (1 - tanα•tanβ)
115| L - tan(α+β) = (tanα + tanβ) / (1 - tanα•tanβ)
116| L 186.0 sin(α-β) = sinα•cosβ - cosα•sinβ
117| L - sin(α-β) = sinα•cosβ - cosα•sinβ
118| L 189.8 cos(α-β) = cosα•cosβ + sinα•sinβ
119| L - cos(α-β) = cosα•cosβ + sinα•sinβ
120| L 192.9 tan(α-β) = (tanα - tanβ) / (1 + tanα•tanβ)
121| L - tan(α-β) = (tanα - tanβ)/(1 + tanα•tanβ)
122| L 197.8 As you come across a right triangle you fell easy to sovle
123| L - 当你遇到直角三角形很容易解
124| L 200.3 But an obtuse triange's gonna make you feel confused
125| L - 但钝角三角形使你感到困惑
126| L 202.5 Don't worry about what you do
127| L - 无须担心
128| L 203.8 There are always means to solve
129| L - 总有解决方法
130| L 204.7 As long as you master the sine cosine law
131| L - 只要你掌握了正余弦定理
132|  
133| [Para N7 段落7]
134| L 209.6 At this momnet I've got nothing to say
135| L - 此刻我无以言表
136| L 213.9 As trig-functions rain down upon me
137| L - 当时三角函数犹雨点般落向我
138| L 218.4 At this moment I've got nothing to say
139| L - 此刻我无以言表
140| L 222.5 Let's sing a song about trig-functions
141| L - 让我们唱起三角函数歌谣吧
142| L 226.7 Long live the trigonometric functions
143| L - 三角函数万岁
144|  
145| [Final 233.5]
146|  

Compilation Info

0501/lyric.txt @ L1-L2
1> !dataver 201804
· Notice: Line 1 - The version of file is 201804, while the latest is 201805. This probably means that the file is outdated.
2> [Info]