Music Archive Loading  

 Login
>N1N2N3N4N5--N6N7

0trigonometric functions
天儿

[段落1 N1]

1when you first study math about 1234

~当你初学数学中的1234

2first study equation about xyzt

~初学方程中的XYZT

3It will help you to think in a logical way

~它将帮助你进行逻辑思考

4When you sing sine,cosine,cosine,tangent

~当你唱起正弦,余弦,余弦,正切

5Sine,cosine,tangent,cotangent

~正弦,余弦,正切,余切

6Sine,cosine,..,secant,cosecant

~正弦,余弦,正割,余割

7Let's sing a song about trig-functions

~让我们唱起三角函数的歌谣吧

[段落2 N2]

8sin(2π+α) = sinα

~sin(2π+α) = sinα

9cos(2π+α) = cosα

~cos(2π+α) = cosα

10tan(2π+α) = tanα

~tan(2π+α) = tanα

11which is induction formula1,and induction formula 2

~这是诱导公式归类1,下面是诱导公式归类2

12sin(π+α) = -sinα

~sin(π+α) = -sinα

13cos(π+α) = -cosα

~cos(π+α) = -cosα

14tan(π+α) = tanα

~tan(π+α) = tanα

15sin(π-α) = sinα

~sin(π-α) = sinα

16cos(π-α) = -cosα

~cos(π-α) = -cosα

17tan(π-α) = -tanα

~tan(π-α) = -tanα

18These are all those "name donot -change"

~这些均为“函数名不变”

[段落3 N3]

19As pi goes to half pi the difference shall be huge

~当π成为π/2是变化会很大

20sin(π/2+α) = cosα

~sin(π/2+α) = cosα

21cos(π/2-α) = sinα

~cos(π/2-α) = sinα

22sin(π/2-α) = cosα

~sin(π/2-α) = cosα

23cos(π/2+α) = -sinα

~cos(π/2+α) = -sinα

24tan(π/2+α) = -cotα

~tan(π/2+α) = -cotα

25tan(π/2-α) = cotα

~tan(π/2-α) = cotα

[段落4 N4]

26That is to say the odds will change, evens are conserved

~这就是说 :奇变偶不变

27The notations that they get depend on where they are

~符号看象限

28But no matter where you are, I've gotta say that

~但不论你在哪,我将会说

29If you were my sine curve,I'd be your cosine curve

~你若为正弦曲线,我愿做余弦曲线

30I'll be your derivative,you'll be my negtive one

~我将为你的导数,你将为我负导数

31As you change you amplitude,I change my phase

~当你改变振幅,我改变相位

32We can oscillate freely in the external space

~我们可在外界空间自由震荡

33As we change our period and costant at hand

~当我们改变周期和手边常数

34We travel from the origin to infinity

~我们从原点驶向无尽

[段落5 N5]

35It's you sine,and you cosine

~是你,正弦,余弦

36Who make charming music around the world

~创造了世间动人的音乐

37It's you tangent,cotangent

~是你,正切,余切

38Who proclaim the true meaning of centrosymmetry

~揭示了中心对称的真谛

[间奏 --]

39- - - - - - -

[段落6 N6]

40You wanna measure width of a river,height of a tower

~你想测量河宽及塔高

41You scratch your head which cost you more than an hour

~你抓耳挠腮一个多小时也想不出

42You don't need to ask any "gods" or "master" for help

~你无需向dalao们请教

43This group of formulas are gonna help you solve

~这一组公式将帮你解决

44sin(α+β) = sinα•cosβ + cosα•sinβ

~sin(α+β) = sinα•cosβ + cosα•sinβ

45cos(α+β) = cosα•cosβ - sinα•sinβ

~cos(α+β) = cosα•cosβ - sinα•sinβ

46tan(α+β) = (tanα + tanβ) / (1 - tanα•tanβ)

~tan(α+β) = (tanα + tanβ) / (1 - tanα•tanβ)

47sin(α-β) = sinα•cosβ - cosα•sinβ

~sin(α-β) = sinα•cosβ - cosα•sinβ

48cos(α-β) = cosα•cosβ + sinα•sinβ

~cos(α-β) = cosα•cosβ + sinα•sinβ

49tan(α-β) = (tanα - tanβ) / (1 + tanα•tanβ)

~tan(α-β) = (tanα - tanβ)/(1 + tanα•tanβ)

50As you come across a right triangle you fell easy to sovle

~当你遇到直角三角形很容易解

51But an obtuse triange's gonna make you feel confused

~但钝角三角形使你感到困惑

52Don't worry about what you do

~无须担心

53There are always means to solve

~总有解决方法

54As long as you master the sine cosine law

~只要你掌握了正余弦定理

[段落7 N7]

55At this momnet I've got nothing to say

~此刻我无以言表

56As trig-functions rain down upon me

~当时三角函数犹雨点般落向我

57At this moment I've got nothing to say

~此刻我无以言表

58Let's sing a song about trig-functions

~让我们唱起三角函数歌谣吧

59Long live the trigonometric functions

~三角函数万岁